ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Chenglong Wang, Kaichao Sun, Lin-Wen Hu, Suizheng Qiu, G. H. Su
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 34-52
Technical Paper | doi.org/10.13182/NT15-42
Articles are hosted by Taylor and Francis Online.
The technology for the 20-MW(thermal) Transportable Fluoride Salt–Cooled High-Temperature Reactor (TFHR) is proposed by Massachusetts Institute of Technology for off-grid applications such as Antarctic bases and remote mining sites. The preliminary thermal-hydraulic analyses and improvements based on a 1/12th full-core model were performed using three-dimensional computational fluid dynamics (CFD). A benchmark study was conducted by comparing the CFD results against empirical correlations and experimental data obtained by Cooke, Silverman, and Grele. In the 1/12th full-core analysis, three practical considerations that may challenge the TFHR temperature limits are evaluated as bounding analysis. These include (1) helium gap between fuel compact and graphite block, (2) thermal conductivity degradations of graphite matrix due to neutron irradiation, and (3) full-core scale power distribution obtained from neutronic calculations. These design considerations lead to insufficient margin between the normal operating condition and the predefined thermal limits. In this context, additional design features are implemented to improve the thermal-hydraulic safety of the TFHR. First, bypass flow in the interstitial gaps between the active core and the reflector is found capable of reducing the temperature peaks at the core periphery. Second, improvements of the flow distribution from the central downcomer to individual coolant channels enable a higher mass flow rate to the regions with compromised cooling access. Overall, thermal-hydraulic performance was significantly improved with a fuel temperature margin from 10 to 150 K and a coolant temperature margin from 16 to 160 K, as well as the more uniform temperature distribution across the reactor core. Furthermore, thermal-hydraulic safety can be maintained at a 20% overpower operating condition [i.e., 24 MW(thermal)]. Overall, this study provides an engineering basis for the TFHR thermal-hydraulic design to improve its safety margin.