ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Elanchezhian Somasundaram, Todd S. Palmer
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 391-403
Technical Paper | doi.org/10.13182/NT15-43
Articles are hosted by Taylor and Francis Online.
The Local Importance Function Transform (LIFT) method is a sophisticated automated variance-reduction technique for Monte Carlo simulation of radiation transport problems. In previous publications, the LIFT method was tested on geometrically simple problems with a coarse representation of radiation energy dependence, and the performance of the method was found to be promising when compared to traditional weight windows–based variance-reduction techniques. In this work, the LIFT method is tested on a spatially complex benchmark test problem with a more realistic representation of energy dependence (50 energy groups) and heterogeneous materials. The performance of the method in comparison with a CADIS (Consistent Adjoint Driven Importance Sampling)–based weight windows method and an analog Monte Carlo simulation is studied. A multigroup Monte Carlo code that utilizes portions of the framework of the deterministic tool Attila has been developed such that the overhead time in implementing the variance-reduction techniques is minimal. The Monte Carlo simulations are performed on an arbitrary tetrahedral mesh created by the mesh generator in Attila. A method to transfer the deterministic solution generated on a finer mesh to a coarser mesh for implementing the hybrid simulations has been developed, and the results are quantified.