ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Elanchezhian Somasundaram, Todd S. Palmer
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 391-403
Technical Paper | doi.org/10.13182/NT15-43
Articles are hosted by Taylor and Francis Online.
The Local Importance Function Transform (LIFT) method is a sophisticated automated variance-reduction technique for Monte Carlo simulation of radiation transport problems. In previous publications, the LIFT method was tested on geometrically simple problems with a coarse representation of radiation energy dependence, and the performance of the method was found to be promising when compared to traditional weight windows–based variance-reduction techniques. In this work, the LIFT method is tested on a spatially complex benchmark test problem with a more realistic representation of energy dependence (50 energy groups) and heterogeneous materials. The performance of the method in comparison with a CADIS (Consistent Adjoint Driven Importance Sampling)–based weight windows method and an analog Monte Carlo simulation is studied. A multigroup Monte Carlo code that utilizes portions of the framework of the deterministic tool Attila has been developed such that the overhead time in implementing the variance-reduction techniques is minimal. The Monte Carlo simulations are performed on an arbitrary tetrahedral mesh created by the mesh generator in Attila. A method to transfer the deterministic solution generated on a finer mesh to a coarser mesh for implementing the hybrid simulations has been developed, and the results are quantified.