ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kuniki Hata, Hiroyuki Inoue, Takao Kojima, Akihiro Iwase, Shigeki Kasahara, Satoshi Hanawa, Fumiyoshi Ueno, Takashi Tsukada
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 434-443
Technical Paper | doi.org/10.13182/NT15-32
Articles are hosted by Taylor and Francis Online.
Gamma radiolysis experiments on solutions of a mixture of sodium chloride (NaCl) and sodium bromide (NaBr) were conducted to confirm the validity of radiolysis calculations for simulated seawater solutions and to determine the importance of bromide anion (Br−) in the production of hydrogen peroxide (H2O2) via water radiolysis. The H2O2 concentration in each solution was measured after irradiation and compared with that obtained from radiolysis calculations. It was found that the calculated and experimental results were in good agreement. The concentration of H2O2 in a 0.6 M NaCl solution increased approximately three times on the addition of 1 mM NaBr. The result showed that Br− plays an important role in the production of H2O2 by water radiolysis, presumably through the reactions of Br− with hydroxyl radical (●OH). For 1 mM NaCl solutions, there is a minimum production rate of H2O2 at pH 8, which increases when the pH changes to either lower or higher values. It was considered that the hydrated electron also plays an important role in H2O2 production under these acidic and alkaline conditions.