ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Kuniki Hata, Hiroyuki Inoue, Takao Kojima, Akihiro Iwase, Shigeki Kasahara, Satoshi Hanawa, Fumiyoshi Ueno, Takashi Tsukada
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 434-443
Technical Paper | doi.org/10.13182/NT15-32
Articles are hosted by Taylor and Francis Online.
Gamma radiolysis experiments on solutions of a mixture of sodium chloride (NaCl) and sodium bromide (NaBr) were conducted to confirm the validity of radiolysis calculations for simulated seawater solutions and to determine the importance of bromide anion (Br−) in the production of hydrogen peroxide (H2O2) via water radiolysis. The H2O2 concentration in each solution was measured after irradiation and compared with that obtained from radiolysis calculations. It was found that the calculated and experimental results were in good agreement. The concentration of H2O2 in a 0.6 M NaCl solution increased approximately three times on the addition of 1 mM NaBr. The result showed that Br− plays an important role in the production of H2O2 by water radiolysis, presumably through the reactions of Br− with hydroxyl radical (●OH). For 1 mM NaCl solutions, there is a minimum production rate of H2O2 at pH 8, which increases when the pH changes to either lower or higher values. It was considered that the hydrated electron also plays an important role in H2O2 production under these acidic and alkaline conditions.