ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Li Liu, Long Fan, Xirui Lu
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 430-433
Technical Paper | doi.org/10.13182/NT15-31
Articles are hosted by Taylor and Francis Online.
This research evaluated the generation of uranium-doped gadolinium zirconate pyrochlore by a high-temperature sintering method. The sintering temperature and holding time were adjusted in the fabricating course. The sintered samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy. The study shows that uranium-doped gadolinium zirconate pyrochlore can be generated with sintering parameters of 1250°C and 72 h. Analysis with XRD indicates that the uranium-doped gadolinium zirconate pyrochlore has a fluorite structure.