ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Olugbenga O. Noah, Johan F. Slabber, Josua P. Meyer
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 375-390
Technical Paper | doi.org/10.13182/NT15-56
Articles are hosted by Taylor and Francis Online.
Natural convection heat transfer in fluid-saturated porous media has in recent years gained considerable attention especially in high-temperature reactors. It is proposed in this study that light water reactors (LWRs) can be made safer by redesigning the fuel in the fuel assembly. The proposed design is aimed at increasing the safety level in LWRs by the use of fuel in the form of loose coated particles in a helium environment inside the nuclear fuel cladding tubes of the fuel elements. The coated particle fuel being a heat source forms a bed in the cladding tube closed at both ends, the heat from the particles is transferred to the gas in the tube, and the gas movement is due to natural convection. In this study, we investigate the heat transfer characteristics inside a cladding tube containing packed beds of spherical particles by simulating a porous region whose medium properties are defined; that is, the geometrical model representing the packed bed is specified as a porous region. The finite volume method was used in solving the three-dimensional Navier-Stokes equation while the heat transfer coefficient h and the dimensionless numbers such as Ra = f(Gr, Pr) and Nu are used in analyzing the results. Simulated results from this investigation were validated with experimental results. The discrepancy in the results may be due to uncertainties, experimental errors, numerical errors, and the consequence of the lump parameter effect in the porous region modeling approach. This approach may be considered a unique means of estimating heat transfer characteristics in porous media.