ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Olugbenga O. Noah, Johan F. Slabber, Josua P. Meyer
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 375-390
Technical Paper | doi.org/10.13182/NT15-56
Articles are hosted by Taylor and Francis Online.
Natural convection heat transfer in fluid-saturated porous media has in recent years gained considerable attention especially in high-temperature reactors. It is proposed in this study that light water reactors (LWRs) can be made safer by redesigning the fuel in the fuel assembly. The proposed design is aimed at increasing the safety level in LWRs by the use of fuel in the form of loose coated particles in a helium environment inside the nuclear fuel cladding tubes of the fuel elements. The coated particle fuel being a heat source forms a bed in the cladding tube closed at both ends, the heat from the particles is transferred to the gas in the tube, and the gas movement is due to natural convection. In this study, we investigate the heat transfer characteristics inside a cladding tube containing packed beds of spherical particles by simulating a porous region whose medium properties are defined; that is, the geometrical model representing the packed bed is specified as a porous region. The finite volume method was used in solving the three-dimensional Navier-Stokes equation while the heat transfer coefficient h and the dimensionless numbers such as Ra = f(Gr, Pr) and Nu are used in analyzing the results. Simulated results from this investigation were validated with experimental results. The discrepancy in the results may be due to uncertainties, experimental errors, numerical errors, and the consequence of the lump parameter effect in the porous region modeling approach. This approach may be considered a unique means of estimating heat transfer characteristics in porous media.