ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Yu-Huai Shih, Te-Chuan Wang
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 247-258
Technical Paper | doi.org/10.13182/NT14-118
Articles are hosted by Taylor and Francis Online.
When an accident occurs, operators in nuclear power plants (NPPs) must follow emergency operating procedures (EOPs) or severe accident management guidelines (SAMGs). However, EOPs and SAMGs are symptom-based procedures and guidelines to cope with severe transients and accidents. Operators depend on real-time operating parameters of NPPs to perform each action in EOPs or SAMGs. When a beyond-design-basis accident like the Fukushima Daiichi accident of 2011 occurs, EOPs or SAMGs cannot be performed effectively without adequate information. One lesson learned from the Fukushima accident is that such a situation requires advance preparation regarding the key indicators, the water supply, reactor pressure vessel (RPV) depressurization, and containment venting strategies so actions can be performed with limited manpower and time. After the Fukushima accident, Taiwan Power Company established ultimate response guidelines (URGs) and has implemented them in three operating NPPs. An URG is an event-based guideline developed to manage accidents caused by a compound disaster beyond the design basis. The purpose of this study is to find out the differences of RPV depressurization strategies between EOPs and URGs and to discuss the effect of different RPV depressurization strategies on fuel integrity. The plant responses and accident physical phenomena are simulated using MAAP5. The results show that the RPV water level should be maintained as high as possible and the RPV pressure should be controlled sufficiently low at the beginning of RPV emergency depressurization to avoid core uncovery and assure fuel integrity. The URG provides the better RPV depressurization strategy to respond to a beyond-design-basis accident and mitigate an anticipated severe accident consequence as early as possible.