ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Stellaria applies to build a molten salt reactor prototype in France
French advanced reactor developer Stellaria has formally submitted an application with the French government for authorization to build a prototype of its fast breeder molten salt reactor concept, known as Stellarium.
The company, which spun out of the country’s Alternative Energies and Atomic Energy Commission (CEA) and Schneider Electric, filed an application for authorization to create (DAC) for the reactor with the government minister in charge of nuclear safety, making it the first French start-up to submit an application with the authorities for a fast-neutron reactor.
Yu-Huai Shih, Te-Chuan Wang
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 247-258
Technical Paper | doi.org/10.13182/NT14-118
Articles are hosted by Taylor and Francis Online.
When an accident occurs, operators in nuclear power plants (NPPs) must follow emergency operating procedures (EOPs) or severe accident management guidelines (SAMGs). However, EOPs and SAMGs are symptom-based procedures and guidelines to cope with severe transients and accidents. Operators depend on real-time operating parameters of NPPs to perform each action in EOPs or SAMGs. When a beyond-design-basis accident like the Fukushima Daiichi accident of 2011 occurs, EOPs or SAMGs cannot be performed effectively without adequate information. One lesson learned from the Fukushima accident is that such a situation requires advance preparation regarding the key indicators, the water supply, reactor pressure vessel (RPV) depressurization, and containment venting strategies so actions can be performed with limited manpower and time. After the Fukushima accident, Taiwan Power Company established ultimate response guidelines (URGs) and has implemented them in three operating NPPs. An URG is an event-based guideline developed to manage accidents caused by a compound disaster beyond the design basis. The purpose of this study is to find out the differences of RPV depressurization strategies between EOPs and URGs and to discuss the effect of different RPV depressurization strategies on fuel integrity. The plant responses and accident physical phenomena are simulated using MAAP5. The results show that the RPV water level should be maintained as high as possible and the RPV pressure should be controlled sufficiently low at the beginning of RPV emergency depressurization to avoid core uncovery and assure fuel integrity. The URG provides the better RPV depressurization strategy to respond to a beyond-design-basis accident and mitigate an anticipated severe accident consequence as early as possible.