ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Seung Min Lee, Travis W. Knight, Stewart L. Voit, Rozaliya I. Barabash
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 287-296
Technical Paper | doi.org/10.13182/NT14-136
Articles are hosted by Taylor and Francis Online.
The solid solution of (U1−yFPy)O2±x has the same fluorite structure as UO2±x, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. The relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U1−yNdy)O2±x was investigated using X-ray diffraction. The lattice parameter behavior in the (U1−yNdy)O2±x solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can be expressed by a particular rule (modified Vegard’s law). The numerical analyses of the lattice parameters for the stoichiometric and nonstoichiometric solid solutions were conducted, and the lattice parameter model for the (U1−yNdy)O2±x solid solution was assessed. A very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U1−yNdy)O2±x solid solution was verified.