ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
P. Balestra, C. Parisi, A. Alfonsi, C. Rabiti
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 175-182
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-138
Articles are hosted by Taylor and Francis Online.
ENEA “Casaccia” Research Center is collaborating with Idaho National Laboratory performing activities devoted to the validation of the Parallel and Highly Innovative Simulation for INL Code System (PHISICS) neutron simulation code. In such framework, the AER-DYN-002 and AER-DYN-003 control rod (CR) ejection benchmarks were used to validate the coupled codes RELAP5-3D/PHISICS.
The AER-DYN-002 benchmark provides a test case of a CR ejection accident in a VVER-440 at hot-zero-power and end-of-cycle conditions assuming an adiabatic fuel and taking into account only the fuel temperature feedback. The AER-DYN-003 benchmark is based on the same problem; however, the moderator density feedback and the coolant heat removal are also considered. A RELAP5-3D core channel-by-channel, thermal-hydraulic nodalization was developed and coupled, first with the RELAP5-3D internal neutronic routine NESTLE and then with the PHISICS code. Analysis of the AER-DYN-002 results shows that the steady-state solutions are in good agreement with the other participants’ average solution, while some differences are shown in the transient simulations. In the AER-DYN-003 benchmark, however, both steady-state and transient results are in good agreement with the average solution.