ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G. Strydom, A. S. Epiney, A. Alfonsi, C. Rabiti
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 15-35
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-146
Articles are hosted by Taylor and Francis Online.
The Parallel and Highly Innovative Simulation for INL Code System (PHISICS) has been under development at Idaho National Laboratory since 2010. It consists of several modules providing improved coupled core simulation capability: INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced Neutron Transport) (three-dimensional nodal transport core calculations); MRTAU (Multi- Reactor Transmutation Analysis Utility) (depletion and decay heat generation); and modules performing criticality searches, fuel shuffling, and generalized perturbation. Coupling of the PHISICS code suite to the thermal-hydraulic system code RELAP5-3D was finalized in 2013, and as part of the verification and validation effort, the first phase of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) MHTGR-350 benchmark has now been completed.
The theoretical basis and latest development status of the coupled PHISICS/RELAP5-3D tool are described in more detail in a concurrent paper. This paper provides an overview of the OECD/NEA MHTGR-350 benchmark and presents the results of exercises 2 and 3 defined for phase I. Exercise 2 required the modeling of a stand-alone thermal fluids solution at the end of equilibrium cycle for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The RELAP5-3D results of four subcases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 required a coupled neutronics and thermal fluids solution, and the PHISICS/RELAP5-3D code suite was used to calculate the results of two subcases.
The main focus of this paper is a comparison of results obtained with the traditional RELAP5-3D “ring” model approach against a much more detailed model that includes kinetics feedback on individual “block” level and thermal feedbacks on a triangular submesh. The higher fidelity that can be obtained by this block model is illustrated with comparison results on the temperature, power density, and flux distributions. It is shown that the ring model leads to significantly lower fuel temperatures (up to 10%) when compared with the higher-fidelity block model and that the additional model development and run-time efforts are worth the gains obtained in the improved spatial temperature and flux distributions.