ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Silva Kalcheva, Edgar Koonen, Pol Gubel
Nuclear Technology | Volume 158 | Number 1 | April 2007 | Pages 36-55
Technical Paper | Best Estimate Methods | doi.org/10.13182/NT07-A3823
Articles are hosted by Taylor and Francis Online.
The subject of this paper is estimation of the maximum values of the heat flux at steady-state nominal operating conditions in the Belgian Material Test Reactor (BR2) at SCK-CEN in Mol. A strong variation of the fuel depletion and the heat flux with the azimuthal direction and dependence on the orientation of the fuel element in the core are obtained. The full-scale three-dimensional (3-D) MCNP&ORIGEN-S heterogeneous geometry model of BR2 with a detailed 3-D isotopic fuel depletion profile, including a detailed azimuthal fuel modeling in the annular concentric plate fuel elements, is used to evaluate the variation of the heat flux with the azimuthal direction in the hot plane. The relative azimuthal power distribution is calculated with MCNP and introduced into ORIGEN-S to evaluate the azimuthal isotopic fuel profile. The applied detailed azimuthal fuel modeling is compared with homogeneous fuel depletion in the hot plane. An increase of the maximum value of the heat flux of 5% for low burnt fuel and 20% for highly burnt fuel due to the azimuthal modeling of the fuel depletion is obtained. A strong variation of the heat flux with the orientation of the fuel element in the core, modeled with the azimuthal fuel profile, is observed. Perturbation effects in the maximum value of the heat flux of 10% for low burnt fuel and up to 40% for highly burnt fuel, correlated to different orientations of the fuel element in the core, are obtained.