ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Rodolfo Vaghetto, Timothy Crook, Alessandro Vanni, Yassin A. Hassan
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 88-95
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-147
Articles are hosted by Taylor and Francis Online.
During a loss-of-coolant accident (LOCA), fibrous debris and other particles generated by the jet impingement may be transported to the sump, accumulate, or even penetrate through the strainers, reaching the reactor core. Pressure relief holes and other plant-specific features may provide alternative paths to the coolant under debris-generated core blockage scenarios and can play a major role in core coolability. A typical four-loop pressurized water reactor was modeled using RELAP5-3D to simulate the reactor system response during large-break LOCA scenarios under hypothetical full core blockage conditions. Pressure relief holes were included in the input model to study the effects of these alternative flow paths on the core coolability. The comparison of the simulation results obtained with two different models (with and without pressure relief holes) proved the effectiveness of these alternative flow paths in providing sufficient flow to the core to remove the decay heat during the long-term cooling phase, maintaining the cladding temperature sufficiently below the safety limits at any time after the core blockage occurred. The results presented in this paper not only confirmed the importance of including specific geometric features of the reactor system (generally neglected) when simulating core blockage scenarios but also provided evidence that even under certain extreme core blockage conditions, core coolability may still be guaranteed.