ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Gabriel Kooreman, Farzad Rahnema
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 264-277
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-150
Articles are hosted by Taylor and Francis Online.
The hybrid Diffusion-Transport Homogenization (DTH) method has been improved by replacing the assembly-level fixed-source calculation step with a fixed number of whole-core transport sweeps following each homogenization step. Like the unmodified DTH method, the Enhanced hybrid Diffusion-Transport Homogenization (EDTH) method adds an “auxiliary cross-section” term to the right side of the transport equation in order to maintain consistency with the heterogeneous equation. As an improvement to the DTH method, the on-the-fly rehomogenization step of the EDTH method utilizes a fixed number of full-core transport sweeps in lieu of assembly-level fixed-source heterogeneous transport calculations. The EDTH method has been tested in one-dimensional reactor core benchmark problems typical of a boiling water reactor core, a gas-cooled thermal reactor [High Temperature Test Reactor (HTTR)] core, and a pressurized water reactor core with mixed-oxide fuel. The method has been shown to reproduce the heterogeneous transport flux profile with 0 to 46 pcm eigenvalue error and 0.1% to 1.8% mean relative flux error with a speedup factor of 1.4 to 4.5 times faster than the DTH method. This represents a speedup of 3.0 to 12.5 times compared to fine-mesh transport.