ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ramamoorthy Karthikeyan, Alain Hébert
Nuclear Technology | Volume 157 | Number 3 | March 2007 | Pages 299-316
Technical Note | Fission Reactors | doi.org/10.13182/NT07-A3819
Articles are hosted by Taylor and Francis Online.
The effect of advanced resonance self-shielding models incorporated in the developmental version of the DRAGON code on estimation of reactivity coefficients of a typical CANDU-6 lattice is evaluated. The advanced self-shielding models are based on either equivalence in the dilution model or on a subgroup approach. Under equivalence in dilution models, the generalized Stamm'ler model was used with or without Riemann integration and Nordheim model. Among the subgroup approaches, the Ribon extended and the statistical self-shielding models were used. The Ribon extended self-shielding model uses mathematical probability tables, while the statistical self-shielding model uses physical probability tables. The analysis focused on four important transients, which include the fuel temperature coefficient, coolant void reactivity, pressure tube ingression, and calandria tube ingression. Four burnup stages for estimation of reactivity have been identified. To benchmark the results obtained using DRAGON, the results obtained were compared with those of MCNP5. These analyses indicated that, of all the self-shielding models, the resonance self-shielding model based on the subgroup approach using physical probability tables seems to perform well for all situations and can be recommended for CANDU-6 analyses using the code DRAGON.