ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kamil Tucek, Mikael Jolkkonen, Janne Wallenius, Waclaw Gudowski
Nuclear Technology | Volume 157 | Number 3 | March 2007 | Pages 277-298
Technical Paper | Accelerators | doi.org/10.13182/NT07-A3818
Articles are hosted by Taylor and Francis Online.
Neutronic and burnup characteristics of an accelerator-driven transuranium burner in a startup mode were studied. Different inert and absorbing matrices as well as lattice configurations were assessed in order to identify suitable fuel and core design configurations. Monte Carlo transport and burnup codes were used in the analyses. The lattice pin pitch was varied to optimize the source efficiency and coolant void worth while respecting key thermal and material-related design constraints posed by fuel and cladding. A HfN matrix appeared to provide a good combination of neutronic, burnup, and safety characteristics: maintaining a hard neutron spectrum, yielding acceptable coolant void reactivity and source efficiency, and alleviating the burnup reactivity swing. A conceptual design of a (TRU,Hf)N fueled, lead-bismuth eutectic-cooled accelerator-driven system was developed. Twice higher neutron fission-to-absorption probabilities in Am isotopes were achieved compared to reactor designs relying on ZrN or YN inert matrix fuel. The production of higher actinides in the fuel cycle is hence limited, with a Cm fraction in the equilibrium fuel being ~40% lower than for cores with ZrN matrix-based fuel. The burnup reactivity swing and associated power peaking in the core are managed by an appropriate choice of cycle length (100 days) and by core enrichment zoning. A safety analysis shows that the system is protected from instant damage during unprotected beam overpower transient.