ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
William S. Charlton, Ryan F. LeBouf, Claudio Gariazzo, D. Grant Ford, Carl Beard, Sheldon Landsberger, Michael Whitaker
Nuclear Technology | Volume 157 | Number 2 | February 2007 | Pages 143-156
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3809
Articles are hosted by Taylor and Francis Online.
A methodology, based on the multiattribute utility analysis, for the assessment of diverse fuel cycles for proliferation resistance was developed. This methodology is intended to allow for the assessment of the effectiveness of safeguards implementation at facilities within a large-scale fuel cycle and allow for the ability to choose technologies based in part on their effectiveness to deter the proliferation of nuclear materials. Fuel cycle facilities under consideration include nuclear reactors, reprocessing facilities, fuel storage facilities, enrichment plants, fuel fabrication plants, uranium conversion plants, and uranium mining and milling operations. The method uses a series of attributes (for example, Department of Energy attractiveness level, weight fraction of even Pu isotopes, measurement uncertainty, etc.) to determine a proliferation resistance measure for each step in a process flow sheet. Each of the attributes has a weighting that determines its importance in the overall assessment. Each attribute also has an associated utility function derived from both expert knowledge and physical characteristics that relates changes in the value of the attribute to its overall effect on the proliferation resistance measure. A method for aggregating proliferation resistance values for each process in a flow sheet into an overall nuclear security measure for the complete cycle was also developed. This method is focused on preventing host nation diversion; however, a similar technique could be used to analyze the risk due to theft by an insider or outsider. This methodology has been applied successfully for example fuel cycles to demonstrate its viability as an assessment methodology and its capability in discriminating diverse fuel cycle options.