ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Serkan Yilmaz, Kostadin Ivanov, Samuel Levine, Moussa Mahgerefteh
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 180-190
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3784
Articles are hosted by Taylor and Francis Online.
In this paper, an efficient genetic algorithm has placed burnable poisons (BPs) into all of the fresh fuel positions in the core employing the optimized BP configurations and techniques developed in two previous papers. Of importance was the previous development of a Kinf filter, which greatly reduced the computational time. The Kinf filter eliminated many of the invalid genotypes/phenotypes before making a precise core depletion analysis. An extensive BP library was generated by the CASMO-4/TABLES-3 codes. The process was automated with a user-friendly program developed for this purpose. The BPs were vendor UO2/Gd2O3 fuel assembly designs used in a reference Three Mile Island Unit 1 core. The optimized UO2/Gd2O3 fuel pin configurations have small residual binding at end of cycle (EOC), and BP loading optimization results with 97.2 ppm soluble boron at EOC while it was 94.4 ppm with the available vendor designs. The result was that optimized UO2/Gd2O3 fuel pin configurations were developed with unique self-shielding properties and residual binding that also provided a 6.89% reduction in the total required Gd amount, providing extra savings in fuel cost.