ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Luciano Burgazzi
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 150-158
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3781
Articles are hosted by Taylor and Francis Online.
The inclusion of passive safety-related systems within the advanced reactor design claims high system availability and reliability. A detailed system and safety analysis applying the failure mode and effect analysis (FMEA) approach is required as a primary step for the development of a methodology aimed at the reliability assessment of passive systems. The present study concerns thermal-hydraulic passive systems that are designed for decay heat removal and rely on natural circulation that foresee a heat exchanger immersed in a cooling pool. The main purposes of the work are to identify important accident initiators, find out the possible consequences to the plant deriving from component malfunctions, individuate possible causes, identify mitigating features and systems, and classify accident initiators in initiating events of accident sequences. A qualitative overview of accident sequences could be derived from the FMEA tables looking at consequences' description and preventive and corrective actions. Failure probabilistic evaluations are included as well to point out the probabilities and frequencies to have the plant in fault and/or unavailability conditions during passive system operation, therefore ensuring a complete set of initiating events of reactor accident sequences. Finally, important feedback to the design activities will derive from the FMEA study performed for safety assessment purposes. An important lesson elicited from the analysis is that measures against common-cause failures can reduce significantly the probability of failure of the system.