ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
W. M. Stacey, Z. Abbasi, C. J. Boyd, A. H. Bridges, E. A. Burgett, M. W. Cymbor, S. W. Fowler, A. T. Jones, R. S. Kelm, B. J. Kern, D. B. Lassiter, J. A. Maddox, W. B. Murphy, H. Park, J. M. Pounders, J. R. Preston
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 99-123
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3777
Articles are hosted by Taylor and Francis Online.
A design concept and supporting analysis are presented for a He-cooled fast reactor for the transmutation of spent nuclear fuel. Coated transuranic (TRU) fuel particles in a SiC matrix are used. The reactor operates subcritical (k 0.95), with a tokamak D-T fusion neutron source, to achieve >90% TRU burnup in repeated five-batch fuel cycles, fissions 1.1 tonnes/full-power year, and produces 700 MW(electric) net electrical power. The reactor design is based on nuclear, fuels, materials, and separations technologies being developed in the Generation-IV, Next Generation Nuclear Plant, and Advanced Fuel Cycle Initiative programs and similar international programs, and the fusion neutron source is based on the physics and technology supporting the ITER design.