ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. H. Trumbull
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 75-86
Technical Paper | Radiation Protection | doi.org/10.13182/NT156-75
Articles are hosted by Taylor and Francis Online.
This paper considers the problem of accurately representing the temperature dependence of neutron cross-section data in neutron transport problems when there are many nuclides and when the temperature distributions vary significantly with both space and time. An approach involving interpolation between nuclear data libraries at various reference temperatures is investigated. Reference nuclear data libraries are obtained by Doppler broadening cross sections to the desired temperatures using the NJOY code system. Several interpolation schemes over various temperature intervals are studied. Interpolated values at intermediate temperatures are compared to NJOY Doppler-broadened results for the same temperature. Differences relative to the Doppler-broadened results are calculated in order to judge the suitability of the interpolation scheme and temperature interval. The total, elastic scattering, capture, and fission (if applicable) reactions for 238U, 235U, natural Zr, 16O, 10B, and 1H are considered in this study, over a temperature range of 294 to 811 K (~70 to ~1000°F). The nuclides and temperature range are selected to best represent typical light water reactor calculations.This work covers only the free-atom cross section and does not explore the many nuances of temperature treatment of nuclear data in the thermal energy range for nuclides where molecular binding effects are significant, e.g., water, beryllium, and graphite. Additionally, dilute-average cross sections are used in the unresolved resonance range (URR) for this study. Temperature treatment of probabilistic methods used to construct cross sections in the URR are not considered for this work.The study shows that cross sections can be interpolated within an accuracy of 0.1% over a temperature interval of 111 K (200°F) for 1H, 10B, and 16O. Smaller intervals are required for nuclides with more complex resonance behavior. Some values of the interpolated cross sections for natural Zr, 238U, and 235U remain greater than the target 0.1% relative difference even with a 28 K (50°F) interval, suggesting that a smaller interval is necessary for these nuclides.