ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
T. H. Trumbull
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 75-86
Technical Paper | Radiation Protection | doi.org/10.13182/NT156-75
Articles are hosted by Taylor and Francis Online.
This paper considers the problem of accurately representing the temperature dependence of neutron cross-section data in neutron transport problems when there are many nuclides and when the temperature distributions vary significantly with both space and time. An approach involving interpolation between nuclear data libraries at various reference temperatures is investigated. Reference nuclear data libraries are obtained by Doppler broadening cross sections to the desired temperatures using the NJOY code system. Several interpolation schemes over various temperature intervals are studied. Interpolated values at intermediate temperatures are compared to NJOY Doppler-broadened results for the same temperature. Differences relative to the Doppler-broadened results are calculated in order to judge the suitability of the interpolation scheme and temperature interval. The total, elastic scattering, capture, and fission (if applicable) reactions for 238U, 235U, natural Zr, 16O, 10B, and 1H are considered in this study, over a temperature range of 294 to 811 K (~70 to ~1000°F). The nuclides and temperature range are selected to best represent typical light water reactor calculations.This work covers only the free-atom cross section and does not explore the many nuances of temperature treatment of nuclear data in the thermal energy range for nuclides where molecular binding effects are significant, e.g., water, beryllium, and graphite. Additionally, dilute-average cross sections are used in the unresolved resonance range (URR) for this study. Temperature treatment of probabilistic methods used to construct cross sections in the URR are not considered for this work.The study shows that cross sections can be interpolated within an accuracy of 0.1% over a temperature interval of 111 K (200°F) for 1H, 10B, and 16O. Smaller intervals are required for nuclides with more complex resonance behavior. Some values of the interpolated cross sections for natural Zr, 238U, and 235U remain greater than the target 0.1% relative difference even with a 28 K (50°F) interval, suggesting that a smaller interval is necessary for these nuclides.