ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Pi-En Tsai, Lawrence H. Heilbronn
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 222-231
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-130
Articles are hosted by Taylor and Francis Online.
Stopping target measurements with energetic ion beams are important for building and validating physics models used to predict nuclear fragmentation fields created by interactions between incoming primary ions and target materials. However, the values of the ratio of primary ion range R to target depth d (R/d) are not the same in several of the existing measurements, and as such, this makes the intercomparison between those measurements complicated without corrections for differences in secondary particle transport through differing amounts of target material. Therefore, this work aims to study the influence of the target geometry on the angular distributions of secondary particles. Cases with 100 and 230 MeV/amu 4He ions bombarding stopping water and iron targets with various dimensions were studied by using the transport model code PHITS (Particle and Heavy Ion Transport code System). With increasing target depth, the impact on the attenuation of secondary particles is more significant for lighter target mass and higher-energy projectiles at forward angles. Also, with deeper targets, more interactions occur between the secondary particles and the target nuclei, which results in more targetlike fragments at large and backward angles. With respect to the cross-sectional area of the stopping targets, the forward angular distributions are similar to the system with smaller cross-sectional area of the targets; however, charged particles are significantly attenuated at large angles, whereas no general rule was found for secondary neutrons at large and backward angles. These results indicate that in order to compare the angular distributions from various stopping target measurements, it will be necessary to utilize a radiation transport code to correct the differences caused by target geometry.