ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Wouter C. de Wet, Lawrence W. Townsend, X. George Xu, Whitney J. Smith
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 308-313
Technical Note | Radiation Biology | doi.org/10.13182/NT15-21
Articles are hosted by Taylor and Francis Online.
One of the many significant challenges mankind faces as we look to expand our footprint in outer space is the hostile space radiation environment. Not unlike many other mission parameters, the doses imparted to astronauts from extraterrestrial radiation could potentially be a limiting factor when considering the longevity of any manned mission. Thus, a detailed knowledge of dose and dose distribution with regard to the tissue-dependent International Commission on Radiological Protection limits would be beneficial to ensure crew safety.
In this work, the Standalone Package for Enhanced Estimation of Dose Distribution (SPEEDD) is developed in order to provide a method of calculating an accurate three-dimensional dose distribution for a space crew. The current version presents a prototype of the software package. The three sources considered when operating in space are solar particle events, galactic cosmic radiation, and trapped radiation belts. In this technical note, trapped radiation will not be discussed in great detail. SPEEDD combines high-fidelity human phantoms with depth-dose tables in order to rapidly calculate whole-body dose as well as individual organ doses. The anatomical phantoms used in SPEEDD are the RPI Adult Male and the RPI Adult Female. They were developed by the Rensselaer Radiation Measurement & Dosimetry Group and are cubically voxelized with a resolution of 2.7 and 2.5 mm, respectively. Generated using the High Energy Transport Code–Human Exploration and Development in Space (HETC-HEDS) Monte Carlo radiation transport code, the depth-dose tables consist of all ions from hydrogen to iron characterized at 18 energy bins ranging from 20 AMeV to 3 AGeV. SPEEDD was written in the Python™ scripting language and is designed to be easily installed or added to larger software packages.