ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Manuel Pantelias, Benjamin Volmert
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 278-285
Technical Paper | Nuclear Plant Operations and Controls | doi.org/10.13182/NT15-13
Articles are hosted by Taylor and Francis Online.
In Switzerland 40% of the electricity generation is produced by nuclear power. With all five reactors being already beyond their 30th year of operation, Nagra (National Cooperative for the Disposal of Radioactive Waste) in collaboration with the utilities periodically contributes to the Swiss Nuclear Power Plant (NPP) decommissioning cost studies. These studies are of relevance to the estimation of the financial input of the utilities to the Swiss decommissioning fund and the planning of decommissioning activities. During reactor operation, a fraction of the neutrons produced in the reactor core will escape the core boundaries and eventually interact with the surrounding matter. The most heavily irradiated components are located in the proximity of the reactor core [e.g., core baffle, core support plates, core barrel, and reactor pressure vessel (RPV)]. Neutrons will also stream in farther ex-RPV areas and activate components such as the reinforced concrete bioshield. Decommissioning costs are dependent, inter alia, on the radioactive waste volumes and on the corresponding isotopic inventories. Neutron-activated components are the main source of radioactivity within a NPP under immediate dismantling (i.e., spent fuel has been removed from the reactor). Reliable neutron transport and activation calculations are, therefore, essential for the estimation of radioactive waste volumes, the selection of an optimal dismantling strategy, the development of the radioactive waste packaging and logistics concept, and consequently for the estimation of the decommissioning costs. In this context, Nagra has developed a state-of-the-art NPP activation calculation sequence that enables the radiological characterization of the Swiss NPPs. This paper focuses on aspects relevant to the neutron transport calculations for a Swiss pressurized water reactor. More specifically, the MCNP5 modeling approach together with the use of the ADVANTG hybrid, variance-reduction acceleration code, is outlined. Furthermore, the validation of the neutron transport calculations with an in situ full-cycle foil activation campaign is presented.