ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jun Woo Bae, Hee Reyoung Kim
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 215-221
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT14-131
Articles are hosted by Taylor and Francis Online.
A design and performance test of an antiscattering X-ray grid that is based on photosensitive glass was conducted using MCNP simulation. The simulation was designed in three parts: source, scatterer, and grid. The source was a cone type with a single energy of 50 keV, and the scatterer was designed as a box with elemental composition and density the same as those of a human body. Three types of grid were tested: ideal, injection, and electroplating. The ideal-type grid was generally known and contained only a shielding wall, the injection-type grid had the shielding material injected into the glass, and the electroplating-type grid had the shielding material electroplated on the glass lattice skeleton. The ideal-type grid showed a scattered and primary photon ratio (SPR) of 0.106, and the nongrid type showed an SPR of 0.159. The injection-type grid had an SPR of 0.126, which corresponded to 119.3% of that of the ideal type. The electroplating-type grid had an SPR of 0.0964, which corresponded to 93.7% of that of the ideal type. It was understood that the electroplating-type grid showed the most effective reduction of the scattered photons in terms of SPR.