ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Hilbert Christensen
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 358-364
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT06-A3768
Articles are hosted by Taylor and Francis Online.
A previously developed radiolysis model has been used to simulate experiments from four laboratories. The source strengths in the experiments with UO2, doped with 238Pu, were 0.01, 0.1, and 1 Ci/g. The agreement was good with the experimental results of Stroes-Gascoyne et al. for their sample with 0.1 Ci/g. Their sample containing 0.01 Ci/g gave a factor-of-3-higher calculated corrosion rate compared with the experimental rate. In the experiments of Cobos et al. and of Kelm and Bohnert, using alpha-doped UO2, the calculated corrosion rates were somewhat lower than the experimental rates. However, recent experiments by Rondinella et al. using UO2 with 10% doped 233U gave considerably lower corrosion rates in good agreement with the model. The calculated corrosion rates for the same source strength were about the same for the experiments by Stroes-Gascoyne et al., Kelm and Bohnert, and Cobos et al. However, the experimental rates varied considerably. The agreement was not good with experiments using Pu(VI) dissolved in solution, in which case the calculated corrosion rate was ten times or more than ten times lower than the experimental rate. The reason for this disagreement could be a chemical effect of Pu(VI) in the solution.