ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Jian-Yu Zhu, Hao-Wei Dai, Wen-Xiong Xie
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 172-180
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT14-115
Articles are hosted by Taylor and Francis Online.
Algorithms for locating the neutron source by neutron time-of-flight (TOF) measurement are established and discussed for monoenergetic and multienergetic neutrons in this paper. For the monoenergetic neutron source, the location of the source could be estimated by locating the position where the variance between the actual TOF and the calculation gains its minimum. For multienergetic neutrons the maximum likelihood (ML) method has been applied to process the time-correlation measurement. The efficiencies of location estimations are studies with simulations. In the simulations, the TOFs are acquired by time-correlation measurement of three neutron detectors surrounding the suspected area of the neutron source. The results indicate that the location of monoenergetic neutron sources could be estimated by the neutron TOF acquired by three detectors, while for multienergetic neutron sources, the likelihood method could be used to locate the most probable location, as well as its possible distribution of location. As the result of large-scale simulation and comparison, the ML estimation method is more effective than traditional methods, especially in conditions of low count rates or low resolution.