ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. Coquelet-Pascal, M. Tiphine, G. Krivtchik, D. Freynet, C. Cany, R. Eschbach, C. Chabert
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 91-110
Technical Paper | Fission Reactors | doi.org/10.13182/NT15-20
Articles are hosted by Taylor and Francis Online.
Nuclear systems, composed of reactors with varied fuel and cycle facilities (enrichment plant, fabrication plant, reprocessing plant, etc.), are complex and in constant evolution. Since 1985, the CEA has been developing the simulation software COSI to study different trajectories of nuclear fleet evolution and provide technical elements to decision makers. The principle of COSI, including the typical composition of the data set, is exposed. To evaluate as accurately as possible the isotopic compositions of materials, several physical models are implemented in COSI. The main ones, the evolution calculation and the equivalence models, are described in detail. An exercise of validation of COSI carried out on the French pressurized water reactor (PWR) historical nuclear fleet until 2010 is also presented, as well as a methodology for propagation of input uncertainties on COSI results.
To illustrate the possibilities of COSI, the results of different scenarios studied in the framework of the French Act for Waste Management are discussed. The objective of these scenarios is to evaluate the feasibility of sodium-cooled fast reactor (SFR) deployment to renew the French PWR fleet on different timescales and to analyze the costs and the benefits of different options of minor actinide (MA) partitioning and transmutation. The impacts of SFR deployment on cycle facilities such as the fabrication plant, the spent fuel storage, and the reprocessing plant are minimized. The SFR deployment appears to be feasible with regard to fissile material availability, with an adaptation of fuel cooling time before reprocessing or of SFR breeding gain.
Minor actinide transmutation in homogeneous mode MA diluted in core) and transmutation in heterogeneous mode (in MA-bearing blankets) are compared not only according to their impacts on cycle facilities and on ultimate waste but also according to the reduction of their inventories. The increases in fresh fuel thermal power and spent fuel decay heat due to the addition of MAs in fuels are quantified. The cases of transmutation of all MAs (americium, neptunium, and curium) and of americium only are distinguished. Alternative scenarios are explored to overcome the challenges associated with each option: reduction of the maximal MA content in fresh SFR fuel in the case of homogeneous transmutation and reduction of interim MA storage in the case of heterogeneous transmutation.