ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yoshitaka Chikazawa, Atsushi Katoh, Hiroyuki Hayafune, Yoshio Shimakawa, Yoshio Kamishima
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 111-124
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-151
Articles are hosted by Taylor and Francis Online.
Severe external hazards on the Japan Sodium-cooled Fast Reactor (JSFR) have been analyzed and evaluated. For seismic design, safety components are confirmed to maintain their functions even against recent strong earthquakes. Integrity of the major components has been confirmed covering recent earthquake conditions. In the case of a tsunami, the seawater pumps for the component cooling water system (CCWS) could be damaged by the tsunami, since they are located at sea level. In the JSFR design with full natural convection decay heat removal systems (DHRSs) and an air-cooling emergency gas turbine, safety-grade components are independent of CCWS, and loss of CCWS does not affect reactor cooling. As a conservative case, hypothetical station blackout (SBO) has been evaluated. In the case of SBO, decay heat is removed by natural convection DHRS, but control of the air cooler (AC) damper is lost after the battery power is out. The analysis has revealed that freezing at one of three ACs could happen due to loss of automatic control of AC dampers. However, the time margin to protected loss of heat sink is evaluated to be >10 days. Manual control of the AC damper is also investigated. Transient analyses show that the AC dampers can be controlled manually adopting a simple operation procedure with sufficient operation time. Decay heat cooling in the case of collapse in all air stacks of AC has been evaluated. The result shows that decay heat could be removed maintaining air paths in two of three ACs by accident management. In conclusion, JSFR in the 2010 design version has enough external hazard toughness mainly thanks to passive safety features and a seismic isolation system.