ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yoshitaka Chikazawa, Atsushi Katoh, Hiroyuki Hayafune, Yoshio Shimakawa, Yoshio Kamishima
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 111-124
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-151
Articles are hosted by Taylor and Francis Online.
Severe external hazards on the Japan Sodium-cooled Fast Reactor (JSFR) have been analyzed and evaluated. For seismic design, safety components are confirmed to maintain their functions even against recent strong earthquakes. Integrity of the major components has been confirmed covering recent earthquake conditions. In the case of a tsunami, the seawater pumps for the component cooling water system (CCWS) could be damaged by the tsunami, since they are located at sea level. In the JSFR design with full natural convection decay heat removal systems (DHRSs) and an air-cooling emergency gas turbine, safety-grade components are independent of CCWS, and loss of CCWS does not affect reactor cooling. As a conservative case, hypothetical station blackout (SBO) has been evaluated. In the case of SBO, decay heat is removed by natural convection DHRS, but control of the air cooler (AC) damper is lost after the battery power is out. The analysis has revealed that freezing at one of three ACs could happen due to loss of automatic control of AC dampers. However, the time margin to protected loss of heat sink is evaluated to be >10 days. Manual control of the AC damper is also investigated. Transient analyses show that the AC dampers can be controlled manually adopting a simple operation procedure with sufficient operation time. Decay heat cooling in the case of collapse in all air stacks of AC has been evaluated. The result shows that decay heat could be removed maintaining air paths in two of three ACs by accident management. In conclusion, JSFR in the 2010 design version has enough external hazard toughness mainly thanks to passive safety features and a seismic isolation system.