ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Gonzalez, L. Hansen, D. Rappleye, R. Cumberland, M. F. Simpson
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 165-171
Technical Paper | Reprocessing | doi.org/10.13182/NT15-28
Articles are hosted by Taylor and Francis Online.
It has previously been proposed by safeguards experts that curium will track plutonium through a spent fuel pyroprocessing facility, enabling nondestructive assaying of plutonium via counting neutron emissions from 244Cm. This is a critical assumption for the neutron balance approach to safeguards. If Cm and Pu were to behave chemically the same, counting neutrons could be used to estimate Pu concentrations. In this study, plutonium tracking with curium has been investigated using Enhanced REFIN with Anodic Dissolution (ERAD), a one-dimensional transient electrorefiner model based on fundamental electrochemical equations. The model was used to simulate simultaneous deposition of uranium, plutonium, and curium onto a solid metal cathode. Chemical/physical properties used by the model were either obtained from the literature or assumed. The standard exchange current density of curium was estimated by analyzing published cyclic voltammetry data for LiCl-KCl-CmCl3. The focus of the ERAD calculations was on verifying that Pu and Cm could codeposit onto the cathode along with U and to determine if the Pu/Cm ratio would be the same between the salt pool and cathode deposit. It was determined that Cm largely resists cathode deposition, while Pu can be driven to codeposit at sufficiently high current densities. The expected concentration of Cm in the salt would not support any deposition of Cm onto the cathode. It would need to be raised to ~1 wt% before small gram quantities of Cm will deposit onto the cathode. Even then, the Pu/Cm ratio of the cathode was found to be three orders of magnitude higher than the ratio in the salt. It is, thus, concluded that the neutron balance approach would be ineffective at safeguarding a nuclear fuel pyroprocessing facility.