ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
S. G. Druce, B. C. Edwards
Nuclear Technology | Volume 55 | Number 2 | November 1981 | Pages 487-498
Technical Paper | Materials | doi.org/10.13182/NT55-487
Articles are hosted by Taylor and Francis Online.
The manganese-molybdenum-nickel steels ASTM A533B and A508 are extensively used in the fabrication of reactor pressure vessels and steam generators in light water reactors. These components receive heat treatments during fabrication and in operational service that could lead to a possible degradation of toughness as a result of grain boundary segregation of alloying and impurity elements promoting temper embrittlement. The susceptibilities to temper embrittlement of commercially produced thick section A533B Class 1 and A508 Class 3 steels have been investigated by Charpy impact testing following isothermal heat treatments in the 300 to 600°C temperature range for periods up to 5000 h. In addition, the combined effects of austenite grain size and impurity content have been studied using experimental melts of the 533B/508 Class 3 type alloy composition doped with specific impurities. The lower and upper shelf fracture modes were examined as a function of aging treatment, and samples exhibiting a low temperature intergranular fracture mode were examined using Auger Electron Spectroscopy to determine the amount and types of elements segregated at the grain boundaries. While the commercial materials have been found to exhibit only small increases in the ductile-brittle transition temperature after isothermal aging at 450 to 500°C, large increases are observed for the experimental material with a high phosphorus content. The degree of embrittlement is strongly dependent on austenite grain size, increasing with increasing grain size. These results indicate the need for close control of chemical composition of the steel in inhibiting embrittlement and cracking in the weld coarse-grained, heat-affected zone regions.