ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. Jain, M. L. Corradini
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 312-323
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3764
Articles are hosted by Taylor and Francis Online.
Experiments were conducted in a rectangular supercritical carbon dioxide (SCCO2) natural-circulation loop at Argonne National Laboratory (ANL) in order to verify the stability margin as suggested by some previous investigators. Although a one-dimensional transient computational model developed at University of Wisconsin, Madison, predicted the development of instabilities for the SCCO2 loop, which had good agreement with some previous work, the experiments conducted at the ANL SCCO2 loop exhibited stable behavior under similar conditions. In order to bridge the gap between the numerical predictions and experimental results by distinguishing between the numerical effects and physical effects, a linear stability approach is adopted in the present study. The linear stability analysis has been conducted for three model natural-circulation loop geometries employing water or carbon dioxide as the working fluid. The results for the supercritical water loops displayed flow stability for a more accurate equation of state (EOS); however, the analysis indicated the presence of instabilities for a less accurate EOS. Furthermore, this analysis still predicts the presence of instabilities for the SCCO2 loop similar to our transient numerical predictions. We additionally note that the stability margin for both water loops and the SCCO2 loop does not correspond with proposed stability criteria from a previous analysis. These two final points suggest the phenomenon is a more complex function of both fluid properties and loop geometry.