ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Kunihiko Satoh, Masao Toyoda, Shigetomo Matsui, Eisuke Mori, Shigeki Shimizu, Keisuke Satoh
Nuclear Technology | Volume 55 | Number 2 | November 1981 | Pages 479-486
Technical Paper | Materials | doi.org/10.13182/NT55-479
Articles are hosted by Taylor and Francis Online.
Hastelloy X electron beam (EB) weld metal shows higher creep rate and slightly lower rupture strength, and the tungsten inert gas (TIG) weld metal shows remarkably lower creep rate and rupture strength as compared with the base metal. Creep behavior for welded joint is determined mainly by the relation between the welding direction and the loading one, the creep rupture times, and the secondary creep rates of base and weld metal. In applying TIG and EB welding to joints of the shell or tubes, there are few problems for EB welding, but for TIG welding it is necessary to improve the weld metal.