ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Ralph O. Meyer
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 293-311
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3763
Articles are hosted by Taylor and Francis Online.
In late 1993 and early 1994, tests in France and Japan showed that cladding damage in fuel rods with burnups above 50 GWd/ton occurs at much lower energies than in unirradiated fuel rods when exposed to large power pulses. During the last decade, significant additional test results have become available to permit an interim assessment of potential cladding failure in reactivity-initiated accidents (RIAs) in reactors with fuel burnups above 40 GWd/ton, which is generally regarded as high-burnup fuel. These data are summarized, and systematic biases due to atypical test conditions are identified. The magnitude of biases in the fuel enthalpy for failure are estimated to range from -19 to +27 cal/g for the cases analyzed. With these adjustments, a lower bound of the enthalpies for experimentally observed cladding failure is compared with potential enthalpies in pressurized water reactors and boiling water reactors. Based on available information on control rod worths, it is concluded that current operating reactors in the United States are not likely to experience cladding failure during the worst postulated RIAs.