ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Motoe Suzuki, Toyoshi Fuketa, Hiroaki Saitou
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 282-292
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3762
Articles are hosted by Taylor and Francis Online.
Exploratory analyses were performed by the RANNS code for simulated tests of the reactivity-initiated accident with two high-burnup pressurized water reactor rods in the Nuclear Safety Research Reactor (NSRR). The code performs thermal and finite element mechanical calculations in an axis-symmetrical cylinder geometry. On the basis of the irradiation-induced rod conditions including bonding, the code analyzed a strong pellet-clad mechanical interaction process that would often lead to low-strain split failure. The predicted quantities such as temperature and stress strain of cladding were discussed and compared with the experimental observations. The calculated cladding permanent strain has a reasonable agreement with postirradiation examination data. The process from crack initiation to final split failure was accounted for by the plastic strain occurrence in the cladding.