ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Gentili, B. Fontaine, G. Rimpault
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 11-24
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-123
Articles are hosted by Taylor and Francis Online.
Fast reactor designs are currently being revisited aiming at having a consolidated safety dossier. In that frame, studying any perturbation of nominal operating condition is mandatory.
Among different initiators, particular attention is being paid to reactivity insertion due to core assembly bowing and deformation and induced lattice readjustments as a consequence of events such as earthquakes.
In this study, a deterministic calculation scheme based on the mesh projection method has been used in order to evaluate the reactivity changes occurring in a deformed sodium fast reactor core.
With the microscopic cross sections calculated by ECCO, full three-dimensional core calculations are being conducted with ERANOS (DIF3D), VARIANT, and SNATCH to solve neutron transport equations in either diffusion, nodal variational, or Sn transport approximations.
A simple analytical model based on perturbation theory has been developed to identify the main phenomena leading to changes in the core reactivity. Reactivity changes induced by small deformations can be estimated as a summation of reactivity perturbations of individual subassemblies.
The results obtained with this method have been checked by comparing them to those obtained with Monte Carlo simulations. A good agreement is being found allowing the use of this method in realistic problems with significant computer resource reduction.
The different contributions to the reactivity changes confirm the results of the analytical model.