ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Joonhong Ahn, Paul L. Chambré, Byung-Hyun Park
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 226-247
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3758
Articles are hosted by Taylor and Francis Online.
A mathematical model for mass flow in a transmutation system has been established for a chain of two transuranic (TRU) radionuclides. The nonrecursive solutions for the fractions of the two TRU radionuclides in the transmuter core before and after the irradiation in the i'th cycle have been obtained by the similarity transformation. With the nonrecursive analytical solutions, the TRU reduction ratio has been formulated as a performance measure for the system. The stability of the system has been defined in terms of the moduli of the eigenvalues of the system. The conditions for a stable system and for a system to reach a quasi-steady state with fewer cycles have been shown in terms of the system parameters. A large value of the nondimensionalized destruction coefficient d is beneficial for effective waste reduction because (a) the system reaches a quasi-steady state faster; (b) the TRU mass in the waste can be reduced more effectively; and (c) the precursor effect becomes negligible, and each radionuclide can be approximately treated as a single radionuclide without precursors.