ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Matthew J Memmott, Annalisa Manera
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 199-212
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-103
Articles are hosted by Taylor and Francis Online.
Integral pressurized water reactors are innovative reactors in which all of the components typically associated with the nuclear steam supply system of a nuclear power station are located within the reactor pressure vessel. In order to facilitate this modification in large [∼1000-MW(electric)] light water reactors (LWRs), compact heat exchangers such as microchannel heat exchangers must be used. Previous attempts at using microchannel heat exchangers were unsuccessful since they are prone to vapor locking and crud blockage when the primary coolant boils. Therefore, the authors propose the use of a flashing drum to facilitate boiling in conjunction with a primary microchannel heat exchanger for a large integral LWR. The integral inherently safe light water reactor (I2S-LWR) is used as a basis for the implementation of this novel concept. The high-temperature, high-pressure secondary water generated in the secondary loop through heating in the microchannel primary heat exchanger of the I2S-LWR is sent to a flashing drum where 99.9% pure vapor is extracted and sent to the turbines. This prevents boiling in the primary heat exchanger that in turn reduces crud deposition, flow instabilities, and the potential for channel blockage or vapor locking in the small channel sizes of microchannel heat exchangers. The benefits and disadvantages of this approach are presented in this paper. Unfortunately, this innovative approach to nuclear steam generation for integral LWRs is challenged by a potential decrease in thermodynamic efficiency. Therefore, a sensitivity study is presented that explores the impact of several design variables on the thermodynamic efficiency of the plant. As part of this study, a simple and a complex Rankine cycle were modeled in order to determine the impact that system design modifications can play in recovering thermodynamic efficiency lost by the steam drum. Both cycles utilize turbines, condensers, and condensate/recirculation pumps, while the complex Rankine cycle utilizes a four-stage turbine with subsequent separation and open feedwater heaters. The optimized efficiencies for the simple and complex Rankine cycles are 31% and 33%, respectively, indicating that additional system enhancements to the power conversion system could compensate for the inclusion of a flashing drum.