ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Matthew J Memmott, Annalisa Manera
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 199-212
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-103
Articles are hosted by Taylor and Francis Online.
Integral pressurized water reactors are innovative reactors in which all of the components typically associated with the nuclear steam supply system of a nuclear power station are located within the reactor pressure vessel. In order to facilitate this modification in large [∼1000-MW(electric)] light water reactors (LWRs), compact heat exchangers such as microchannel heat exchangers must be used. Previous attempts at using microchannel heat exchangers were unsuccessful since they are prone to vapor locking and crud blockage when the primary coolant boils. Therefore, the authors propose the use of a flashing drum to facilitate boiling in conjunction with a primary microchannel heat exchanger for a large integral LWR. The integral inherently safe light water reactor (I2S-LWR) is used as a basis for the implementation of this novel concept. The high-temperature, high-pressure secondary water generated in the secondary loop through heating in the microchannel primary heat exchanger of the I2S-LWR is sent to a flashing drum where 99.9% pure vapor is extracted and sent to the turbines. This prevents boiling in the primary heat exchanger that in turn reduces crud deposition, flow instabilities, and the potential for channel blockage or vapor locking in the small channel sizes of microchannel heat exchangers. The benefits and disadvantages of this approach are presented in this paper. Unfortunately, this innovative approach to nuclear steam generation for integral LWRs is challenged by a potential decrease in thermodynamic efficiency. Therefore, a sensitivity study is presented that explores the impact of several design variables on the thermodynamic efficiency of the plant. As part of this study, a simple and a complex Rankine cycle were modeled in order to determine the impact that system design modifications can play in recovering thermodynamic efficiency lost by the steam drum. Both cycles utilize turbines, condensers, and condensate/recirculation pumps, while the complex Rankine cycle utilizes a four-stage turbine with subsequent separation and open feedwater heaters. The optimized efficiencies for the simple and complex Rankine cycles are 31% and 33%, respectively, indicating that additional system enhancements to the power conversion system could compensate for the inclusion of a flashing drum.