ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Alexander J. Mieloszyk, Mujid S. Kazimi
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 268-281
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-104
Articles are hosted by Taylor and Francis Online.
To provide steady-state fuel performance evaluations for the (ThU)O2-fueled Reduced moderation Boiling Water Reactor (RBWR-Th), modifications have been made to the FRAPCON-MIT code. In addition to the use of existing (ThU)O2 capabilities in FRAPCON-MIT, a radial power profile specific to the RBWR-Th was implemented. To more accurately model the corrosion acceleration due to high fast neutron fluence, the oxidation model was modified, and a new hydrogen uptake model was introduced. A preliminary assessment of an average RBWR-Th fuel rod shows the fuel temperature to remain below 1450 K and the fission gas release (FGR) to remain below 7%. However, because of the low free gas volume of the RBWR-Th rods, the plenum pressure is very sensitive to FGR and is shown to be capable of exceeding the coolant pressure. Of more concern is the high cladding hydrogen content that results from the acceleration of hydrogen pickup at relatively low burnups, which is caused by the high fast neutron fluence on the cladding in the RBWR-Th. This high hydrogen content leads to significant restrictions and, ultimately, elimination of the margin to acceptable accident limits, presenting a distinct challenge to the RBWR-Th design. A new cladding material, GNF-Ziron, from Global Nuclear Fuels (GNF) offers a potential solution to this challenge by delaying the acceleration of the hydrogen pickup. The potential benefits of using GNF-Ziron cladding are explored in a sensitivity study. This study illustrates that the selection of an appropriate cladding material for the RBWR-Th is crucial for its success.