ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Franco Polidoro, Michael Flad, Werner Maschek
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 246-253
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-97
Articles are hosted by Taylor and Francis Online.
In the case of a severe accident in a core resulting from unprotected loss of flow (ULOF) or unprotected transient overpower, damage can propagate from subassembly to subassembly and produce a whole-core–scale molten pool. Because the core is not in its most reactive configuration, a massive collapse of the molten material could result in a rapid supercritical condition with release of a large amount of energy. However, timely and sufficient fuel relocation outside the core by dedicated means could prevent any risk of recriticality and accident escalation. Based on a reference 1500-MW(electric) sodium-cooled fast reactor design, this paper describes the main results obtained in evaluating the recriticality potential of the European Sodium Fast Reactor (ESFR) core and conditions for its elimination during a ULOF-type transient. This study has been carried out in the frame of the Collaborative Project on European Sodium Fast Reactor of the 7th Framework Programme Euratom. The numerical analyses carried out in the present work allow one to estimate the amount of fuel mass that has to be removed from the core in order to maintain it in subcritical conditions, preventing the formation of a critical pool. Requirements for successful application of this approach, in terms of the negative reactivity insertion rate by fuel relocation and timing of discharge from the core, are derived.