ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Phillip M. Gorman, Jasmina L. Vujic, Ehud Greenspan
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 282-294
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-106
Articles are hosted by Taylor and Francis Online.
This study searches for the optimal fuel assembly design for the RBWR-Th core, which is a reduced-moderation boiling water reactor that is fuel-self-sustaining. Except for the initial fuel loading, it is charged with only fertile fuel and discharges only fission products, recycling all actinides. The RBWR-Th is a variant of the RBWR-AC core proposed by Hitachi, which arranges its fuel in a hexagonal tight lattice, has a high outlet void fraction, axially segregates seed and blanket regions, and fits within the advanced boiling water reactor (ABWR) pressure vessel. The RBWR-Th shares these characteristics but replaces depleted uranium (DU) with thoria as the primary fertile fuel, eliminates the internal blanket while elongating the seed region, and eliminates absorbers from the axial reflectors.
The sensitivity of important RBWR-Th core performance parameters to change in each one of a dozen design variables was established. These sensitivities provide useful insight and guidance to search for the optimal core design. The design variables of the sensitivity studies include the length of the seed and blanket zones, fuel rod diameter, lattice pitch, number of pins per assembly, concentration distribution of the recycled transfertile (transuranium + transthorium) isotopes in the seed, amount of DU in the seed makeup, coolant mass flow rate, and simulated depletion cycle length. The performance of the RBWR-Th core was found to be highly sensitive to the pitch-to-diameter ratio and to modeling assumptions. Using the conservative modeling assumptions, it was not possible to get the full ABWR power level without exceeding the pressure drop constraint.