ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Brookhaven experiment offers new way to study nucleus structure
Recently published research done at Brookhaven National Laboratory is offering a new, high-energy method for studying the structure of atomic nuclei. Scientists have been using the Solenoidal Tracker at the Relativistic Heavy Ion Collider (RHIC), known as STAR, to track the particles produced by ion collisions in the particle accelerator. Their research was published earlier this month in Nature.
Phillip M. Gorman, Jasmina L. Vujic, Ehud Greenspan
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 282-294
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-106
Articles are hosted by Taylor and Francis Online.
This study searches for the optimal fuel assembly design for the RBWR-Th core, which is a reduced-moderation boiling water reactor that is fuel-self-sustaining. Except for the initial fuel loading, it is charged with only fertile fuel and discharges only fission products, recycling all actinides. The RBWR-Th is a variant of the RBWR-AC core proposed by Hitachi, which arranges its fuel in a hexagonal tight lattice, has a high outlet void fraction, axially segregates seed and blanket regions, and fits within the advanced boiling water reactor (ABWR) pressure vessel. The RBWR-Th shares these characteristics but replaces depleted uranium (DU) with thoria as the primary fertile fuel, eliminates the internal blanket while elongating the seed region, and eliminates absorbers from the axial reflectors.
The sensitivity of important RBWR-Th core performance parameters to change in each one of a dozen design variables was established. These sensitivities provide useful insight and guidance to search for the optimal core design. The design variables of the sensitivity studies include the length of the seed and blanket zones, fuel rod diameter, lattice pitch, number of pins per assembly, concentration distribution of the recycled transfertile (transuranium + transthorium) isotopes in the seed, amount of DU in the seed makeup, coolant mass flow rate, and simulated depletion cycle length. The performance of the RBWR-Th core was found to be highly sensitive to the pitch-to-diameter ratio and to modeling assumptions. Using the conservative modeling assumptions, it was not possible to get the full ABWR power level without exceeding the pressure drop constraint.