ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Xin-Guo Yu, Ki-Yong Choi, Chul-Hwa Song, Istvan Trosztel, Ivan Toth, Gyorgy Ezsol
Nuclear Technology | Volume 191 | Number 2 | August 2015 | Pages 136-150
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-55
Articles are hosted by Taylor and Francis Online.
Pressure waves might be expected in a nuclear reactor system due to a sudden rupture of a pipe or to quick opening or closure of a system valve. Once generated, they can result in large mechanical loads on the reactor pressure vessel internal structures and pipelines, threatening their integrity. This kind of phenomenon is an important issue and a limiting accident case for nuclear power plant safety, which requires an extensive analysis to ensure plant safety. To study these phenomena, four pressure wave propagation (PWP) tests have been performed in the PMK-2 test facility in MTA-EK. In addition, the first one of the four tests has been used to assess the capability of the MARS-KS code in simulating PWP phenomena. Then, an input model representing the PMK-2 test facility was developed to simulate the tests. Herein, the MARS-KS code simulation results are compared with the test results for the first PWP test. The comparison shows that the MARS-KS code can simulate the PWP frequencies and pressure wave peaks well. After this qualified assessment, the MARS-KS code is then deployed to conduct a sensitivity analysis on the effect of the break size, break opening times, initial coolant conditions, and existence of the pressurizer on the PWP phenomena. The sensitivity analysis on the break opening times shows that the pressure wave amplitude is relevant to the break opening times and that the shorter the break opening time is, the faster the pressure depressurizes. The sensitivity analysis on the effect of the break sizes shows that the larger the break size is, the higher the pressure peak is. And, there is little effect of initial coolant pressure and temperatures and isolation of the pressurizer.