ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Seong-Wan Hong, Beong-Tae Min, Seong-Ho Hong
Nuclear Technology | Volume 191 | Number 2 | August 2015 | Pages 122-135
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-84
Articles are hosted by Taylor and Francis Online.
Steam explosions by the interaction of molten corium with water have been studied extensively because they may have the potential to impact the integrity of the containment. Since breakup and fragmentation processes during premixing are important mechanisms that influence steam explosion behavior, the particle size distribution characteristics on fuel-coolant interaction (FCI) have been investigated in the TROI (Test for Real cOrium Interaction with water) test facility.
The data characteristics indicate that FCI characteristics depend upon the composition of the prototypic corium material, and the particle size of the debris is related to the intensity of the dynamic pressure produced by an explosion. The mass mean diameters of the debris produced by explosive compositions were less than that of the nonexplosive compositions. A mass mean diameter of 2 mm was found to be a boundary size produced by a steam explosion of corium. The particle sizes of the molten corium involving a steam explosion were shown to be mainly 3 to 6 mm depending on the material and composition, but the size distribution shifted to smaller sizes if a steam explosion occurred. Small corium droplets of less than ∼3 mm did not seem to contribute to a steam explosion owing to solidification at an early stage before the explosion, but large droplets contributed due to their liquid state.
Zirconia, with the largest fusion heat, has almost always exploded, and the explosions have been energetic, while the eutectic composition (UO2/ZrO2 = 70/30 at weight percentage) frequently exploded. On the other hand, noneutectic compositions rarely exploded, even though the heat of the fusion was very similar to the eutectic composition that frequently exploded. The main reason why noneutectic corium compositions do not explode seemed to be that they undergo solidification by forming a “mushy zone” with a small freezing temperature range. To determine whether noneutectic corium melts cooled down through the mushy zone, particles of this composition were analyzed from the surface inward using a scanning electron microscope, an electron probe microanalyzer, and X-ray diffraction. However, all particles were found to have a homogeneous solid solution. The large particles showed the typical solidification shapes of a general molten material. The small particles generally had only a few small pores and small cracks. The morphologies of the large and small particles were found to be similar.