ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Charles Forsberg, Per F. Peterson
Nuclear Technology | Volume 191 | Number 2 | August 2015 | Pages 113-121
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-88
Articles are hosted by Taylor and Francis Online.
The fluoride salt–cooled high-temperature reactor (FHR) is a new reactor type that combines the graphite-matrix coated-particle fuel and graphite moderator from high-temperature gas-cooled reactors (HTGRs) with a clean liquid fluoride salt coolant. No FHR has yet been built. The proposed fuel cycle is a once-through fuel cycle—essentially identical to that of HTGRs. There is the option of adopting closed fuel cycles. Relative to light water reactor (LWR) spent nuclear fuel (SNF), all graphite-matrix coated-particle SNFs share the common characteristics of superior proliferation resistance and long-term performance as a waste form in a geological repository. The allowable HTGR and FHR SNF storage temperatures are much higher than allowable LWR SNF storage temperatures. These SNF characteristics are (a) a consequence of the high-temperature fuel form with a graphite matrix and SiC coating of the fuel microspheres and (b) to a first-order approximation independent of the reactor type in which the fuel is used.
There are differences. The FHR reactor core power density is four to ten times higher than in an HTGR, so the short-term decay heat of the SNF per unit volume upon discharge is four to ten times higher. The volume of FHR SNF is one-half to one-third that of an HTGR per unit energy output because (a) the salt provides some neutron moderation thus reducing the carbon-to-uranium ratio of the fuel and (b) the economic optimization with higher power densities increases the fuel loading. The FHR SNF volume is about four times that of a LWR per unit of electricity. The coolant generates significant tritium that is partly absorbed by the graphite and can be partly desorbed at higher temperatures. Last, any residual solid salt coolant with the SNF at low temperatures can undergo radiolysis with the potential generation of fluorine gas. The presence of the salt coolant on the SNF and graphite moderator will require treatment, removal of residual coolant salt, or demonstration that the small quantities of radiolysis products of frozen salt do not impact long-term performance of storage or disposal facilities.