ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Sung Ho Lee, Geun Il Park, Sung Bin Park
Nuclear Technology | Volume 191 | Number 2 | August 2015 | Pages 167-173
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-87
Articles are hosted by Taylor and Francis Online.
Pyroprocessing technology is one of the most promising technologies for many advanced fuel cycle scenarios with favorable economic potential and intrinsic proliferation resistance. In pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite and a key issue in the industrialization of pyroreprocessing. However, there have been a few transport studies on high-temperature molten salt. Three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for LiCl-KCl molten salt transport. The suction pump transport method was selected for molten salt transport owing to its flexibility. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Several preliminary suction transport experiments were carried out using the prepared LiCl-KCl eutectic salt at 773 K to observe the transport behavior of LiCl-KCl molten salt. For the experiments, ∼2 kg of LiCl-KCl eutectic salt was prepared by mixing 99.0% purity LiCl and KCl and drying in a convection dry oven at 473 K for 1 h. The experimental results of a laboratory-scale molten salt transport using a suction method showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 0.0133 to 1.33 kPa at 773 K. From experimental results on the mass flow rate according to suction transport time, the mass flow rate according to suction time is 1.54 kg/min. In addition, to establish engineering-scale salt transport technology, the PRIDE salt transport system was designed and installed in an Ar cell, on the second floor of the PRIDE facility, for engineering-scale salt transport demonstration, and its performance was confirmed.