ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ignas Mickus, Jan Dufek, Kaur Tuttelberg
Nuclear Technology | Volume 191 | Number 2 | August 2015 | Pages 193-198
Technical Note | Reprocessing | doi.org/10.13182/NT14-48
Articles are hosted by Taylor and Francis Online.
We present a stability test of the explicit Euler and predictor-corrector–based coupling schemes in Monte Carlo burnup calculations of the gas fast reactor fuel assembly. Previous studies have identified numerical instabilities of these coupling schemes in Monte Carlo burnup calculations of thermal spectrum reactors due to spatial feedback–induced neutron flux and nuclide density oscillations, where only sufficiently small time steps could guarantee acceptable precision. New results suggest that these instabilities are insignificant in fast-spectrum assembly burnup calculations, and the considered coupling schemes can therefore perform well in fast-spectrum reactor burnup calculations even with relatively large time steps.