ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Terumitsu Miura, Toru Obara, Hiroshi Sekimoto
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 78-89
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3747
Articles are hosted by Taylor and Francis Online.
Polonium contamination on material surfaces has been considered one of the problems in the use of lead-bismuth eutectic (LBE) as a coolant and/or target in nuclear systems. Neutron-irradiated LBE contains polonium and can contaminate material surfaces of the primary loop in nuclear systems. Some methods for removal of polonium from neutron-irradiated LBE have been investigated. In this paper, the theory and the effectiveness of the baking method for polonium decontamination of a material surface contaminated by neutron-irradiated LBE are described. Theoretical investigation of the baking method was performed using Langmuir's equation. The effectiveness of the baking method was investigated by baking experiments using Type 316 stainless steel plates contaminated by neutron-irradiated LBE. The experimental results indicated that the baking method is effective for polonium decontamination when the baking temperature is more than 500°C in a vacuum condition (0.4 Pa). The effective temperature for polonium decontamination of Type 316 plates differed from that of quartz glass plates previously reported. Comparing the experimental results and calculations of the evaporation rate of polonium compound by Langmuir's equation showed that the difference in effective temperatures was due to the different chemical forms of polonium, i.e., elemental polonium and lead polonide.