ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Daisuke Kawasaki, Joonhong Ahn, Chang-Lak Kim, Jin-Beak Park
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 374-388
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3741
Articles are hosted by Taylor and Francis Online.
The release of radionuclides from the conceptual low- and intermediate-level radioactive waste (LILW) repository in Korea is analyzed by establishing a multicompartment model. The model takes into account the vault-array configuration consisting of multiple waste types, multimember radioactive decay chains, and radionuclide transport through the water-unsaturated regions and water-saturated aquifer. Observations of the repository performance have been made with the radiological exposure dose rates and with the radiotoxicities in the environment.Numerical results show that, among all the radionuclides in the waste, 129I is the predominant contributor to the overall peak exposure dose rate. The peak exposure dose rate of 129I can be affected by a migration distance in the geosphere and the vault-array configuration. Reducing the initial inventory of 129I stored in the waste vaults or spreading its release over a longer time period by modification of the engineered barrier system would effectively reduce the exposure dose rate because the release rate of 129I from the repository is reduced.The total radiotoxicity in the environment is dominated by 129I at early times and by 238U and its daughters after 106 yr. Because of the long half-lives of these nuclides, the radiotoxicity in the environment is insensitive to the vault-array configuration or to the transport distance in the geosphere.