ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
T. H. Trumbull, D. R. Harris
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 350-360
Technical Paper | Radiation Protection | doi.org/10.13182/NT06-A3739
Articles are hosted by Taylor and Francis Online.
The effect of material homogenization on the calculated gamma-ray dose rate was studied for several arrangements of typical pressurized water reactor (PWR) spent fuel pins in an air medium using the Monte Carlo code MCNP. The models analyzed increased in geometric complexity, beginning with a single fuel pin; progressing to small lattices, i.e., 3 × 3, 5 × 5, and 7 × 7 fuel pins; and culminating with a full 17 × 17 pin PWR bundle analysis. The fuel pin dimensions and compositions were taken directly from a previous study, and efforts were made to parallel this study by specifying identical flux-to-dose functions and gamma-ray source spectra.The analysis shows two competing components to the overall effect of material homogenization on the calculated dose rate. Homogenization of pin lattices tends to lower the effect of radiation channeling but increase the effect of source redistribution. Depending on the size of the lattice and the location of the detectors, the net effect of material homogenization on the dose rate can be insignificant, or it can range from a 6% decrease to a 35% increase relative to the detailed geometry model.