ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Kyoung Woo Seo, Moo Hwan Kim, Mark H. Anderson, Michael L. Corradini
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 335-349
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3738
Articles are hosted by Taylor and Francis Online.
Because of the dramatic variation of physical properties with a modest change of temperature, no existing engineering correlation or models can accurately predict heat transfer of supercritical fluids. This paper seeks to classify the conditions where the existing models are applicable and to better understand these local heat transfer mechanisms. The first objective is the focus of this paper. FLUENT was employed to compute the wall temperatures for various heat flux and mass flux conditions and to be compared with experimental data. Because the model was developed for a wide range of flow conditions, it was necessary to make certain assumptions. The simulations showed a good agreement with high mass flux conditions, where buoyancy effects could be neglected. The FLUENT model, however, had difficulty predicting the localized low heat transfer rates seen in the combined condition of high heat flux and low mass flux. A new generalized parameter, dependent on the heat and mass flux, was developed to classify under which conditions this FLUENT standard model was applicable. This global Froude number can be used as the parameter to predict under which conditions the buoyancy effect will be dominant and lower heat transfer rates will occur.