ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Kyoung Woo Seo, Moo Hwan Kim, Mark H. Anderson, Michael L. Corradini
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 335-349
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3738
Articles are hosted by Taylor and Francis Online.
Because of the dramatic variation of physical properties with a modest change of temperature, no existing engineering correlation or models can accurately predict heat transfer of supercritical fluids. This paper seeks to classify the conditions where the existing models are applicable and to better understand these local heat transfer mechanisms. The first objective is the focus of this paper. FLUENT was employed to compute the wall temperatures for various heat flux and mass flux conditions and to be compared with experimental data. Because the model was developed for a wide range of flow conditions, it was necessary to make certain assumptions. The simulations showed a good agreement with high mass flux conditions, where buoyancy effects could be neglected. The FLUENT model, however, had difficulty predicting the localized low heat transfer rates seen in the combined condition of high heat flux and low mass flux. A new generalized parameter, dependent on the heat and mass flux, was developed to classify under which conditions this FLUENT standard model was applicable. This global Froude number can be used as the parameter to predict under which conditions the buoyancy effect will be dominant and lower heat transfer rates will occur.