ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Vaclav Dostal, Pavel Hejzlar, Michael J. Driscoll
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 265-282
Technical Paper | Fission Reactors | doi.org/10.13182/NT154-265
Articles are hosted by Taylor and Francis Online.
Supercritical carbon dioxide cycles are a promising power conversion option for future nuclear reactors operating with a reactor outlet temperature in the range of 550 to 650°C. The recompression cycle version operating with ~20-MPa turbine inlet pressure achieves similar cycle efficiencies as helium Brayton cycles operating at ~250°C higher turbine inlet temperature. The simplicity and high efficiency of the recompression cycle makes it a prime option from among the family of supercritical carbon dioxide cycles. The elimination of the need for intercooling due to the small required compressor work (because of the high density close to the critical point) makes the recompression cycle even simpler than helium Brayton cycles, which require intercooling to achieve attractive efficiencies. The high operating pressure reduces the size of the plant components significantly, making it a promising power cycle for low-cost modularized electricity-generating nuclear systems. However, the real gas behavior that improves the cycle efficiency presents a challenge for part-load operation. The traditional inventory control used for helium Brayton cycles may not be feasible. Bypass control is thus the prime option for part-load operation, making the cycle less efficient than during base-load operation. Since nuclear power plants are operated almost exclusively in base load, this drawback is not a disqualifying blemish.