ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Vaclav Dostal, Pavel Hejzlar, Michael J. Driscoll
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 265-282
Technical Paper | Fission Reactors | doi.org/10.13182/NT154-265
Articles are hosted by Taylor and Francis Online.
Supercritical carbon dioxide cycles are a promising power conversion option for future nuclear reactors operating with a reactor outlet temperature in the range of 550 to 650°C. The recompression cycle version operating with ~20-MPa turbine inlet pressure achieves similar cycle efficiencies as helium Brayton cycles operating at ~250°C higher turbine inlet temperature. The simplicity and high efficiency of the recompression cycle makes it a prime option from among the family of supercritical carbon dioxide cycles. The elimination of the need for intercooling due to the small required compressor work (because of the high density close to the critical point) makes the recompression cycle even simpler than helium Brayton cycles, which require intercooling to achieve attractive efficiencies. The high operating pressure reduces the size of the plant components significantly, making it a promising power cycle for low-cost modularized electricity-generating nuclear systems. However, the real gas behavior that improves the cycle efficiency presents a challenge for part-load operation. The traditional inventory control used for helium Brayton cycles may not be feasible. Bypass control is thus the prime option for part-load operation, making the cycle less efficient than during base-load operation. Since nuclear power plants are operated almost exclusively in base load, this drawback is not a disqualifying blemish.