ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Marzio Marseguerra, Enrico Zio, Fabio Marcucci
Nuclear Technology | Volume 154 | Number 2 | May 2006 | Pages 224-236
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3730
Articles are hosted by Taylor and Francis Online.
The control and operation of complex power-generating systems, such as nuclear power plants, rely on the measurements of several sensors that monitor the process and the system state. On the basis of the sensor measurements, the system is operated for maximum economic efficiency and safety. Out-of-calibration sensors can lead to misinterpretation of the system state and problems with control and operation of the process, with possible economic losses, equipment damage, and safety consequences. To avoid such occurrences, periodic sensor calibrations are scheduled to ensure that sensors are operating correctly. These calibrations are performed manually and involve all sensors, independent of the actual need for calibration of each sensor. Continuous sensor calibration monitoring would then be most desirable both to ensure correct process control and system operation and to reduce maintenance costs associated with performing unnecessary manual sensor calibrations. This latter issue is of great relevance in nuclear power plants due to the large number of sensors employed, which are tested for calibration at each refueling outage. In this paper, the artificial neural network-based sensor calibration monitoring system is proposed to provide continuous sensor status information and virtual estimates for faulty sensors. In particular, we illustrate the design of an autoassociative artificial neural network for sensor fault detection and validation. The efficiency of the proposed method is verified through its application to eight critical transient signals coming from a U-tube steam generator of a pressurized water reactor modeled by means of a validated simulation code.